Peptide-major histocompatibility complex class II complexes with mixed agonist/antagonist properties provide evidence for ligand-related differences in T cell receptor-dependent intracellular signaling

نویسندگان

  • L Racioppi
  • F Ronchese
  • L A Matis
  • R N Germain
چکیده

Clonal activation of CD4+ and CD8+ T lymphocytes depends on binding of peptide-major histocompatibility complex (MHC) molecule complexes by their alpha/beta receptors, eventually resulting in sufficient aggregation to initiate second messenger generation. The nature of intracellular signals resulting from such T cell receptor (TCR) occupancy is believed to be independent of the specific structure of the ligand being bound, and to vary quantitatively, not qualitatively, with the concentration of ligand offered and the affinity of the receptor for the peptide-MHC molecule complex. In contrast to the expectations of this model, the analysis of the response of a T helper type 1 clone to mutant E alpha E beta k molecules in the absence or presence of a peptide antigen revealed that peptide inhibited the interleukin 2 (IL-2) response to an otherwise allostimulatory mutant form of this MHC class II molecule. The inhibition was not due to competition for formation of alloantigen, it required TCR recognition of peptide-mutant MHC molecule complexes, and it decreased IL-2 production without affecting receptor-dependent IL-3, IL-2 receptor alpha, or size enlargement responses. This preferential reduction in IL-2 secretion could be correlated with the costimulatory signal dependence of this cytokine response, but could not be overcome by crosslinking the CD28 molecule on the T cell. These results define a new class of TCR ligands with mixed agonist/antagonist properties, and point to a ligand-related variation in the quality of clonotypic receptor signaling events or their integration with other signaling processes. It was also found that a single TCR ligand showed greatly different dose thresholds for the elicitation of distinct effector responses from a cloned T cell population. The observations that changes in ligand structure can result in qualitative alterations in the effects of receptor occupancy and that quantitative variations in ligand density can be translated into qualitative differences in T cell responses have important implications for models of intrathymic selection and control of the results of active immunization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial signaling by CD8+ T cells in response to antagonist ligands

Structural variants of an agonist peptide-major histocompatibility complex (MHC) molecule ligand can show partial agonist and/or antagonist properties. A number of such altered ligands appear to act as pure antagonists. They lack any detectable ability to induce T cell effector function and have been described as unable to induce calcium transients and turnover of inositol phosphates. This has ...

متن کامل

Presentation of antagonist peptides to naive CD4+ T cells abrogates spatial reorganization of class II MHC peptide complexes on the surface of dendritic cells.

By using dendritic cells (DCs) transduced with retroviruses encoding covalent A(b)beta/peptide fusion proteins tagged with fluorescent proteins, we followed the relocation of class II MHC molecules loaded with agonist or null peptides during the onset of activation of naive and effector CD4(+) T cells. Clusters of T cell receptor (TCR)/CD3 complex formed in parallel with clusters of agonist cla...

متن کامل

T cell activity correlates with oligomeric peptide-major histocompatibility complex binding on T cell surface.

Recognition of virally infected cells by CD8+ T cells requires differentiation between self and nonself peptide-class I major histocompatibility complexes (pMHC). Recognition of foreign pMHC by host T cells is a major factor in the rejection of transplanted organs from the same species (allotransplant) or different species (xenotransplant). AHIII12.2 is a murine T cell clone that recognizes the...

متن کامل

The Efficiency of CD4 Recruitment to Ligand-engaged TCR Controls the Agonist/Partial Agonist Properties of Peptide–MHC Molecule Ligands

One hypothesis seeking to explain the signaling and biological properties of T cell receptor for antigen (TCR) partial agonists and antagonists is the coreceptor density/kinetic model, which proposes that the pharmacologic behavior of a TCR ligand is largely determined by the relative rates of (a) dissociation ofligand from an engaged TCR and (b) recruitment oflck-linked coreceptors to this lig...

متن کامل

Clone-specific T cell receptor antagonists of major histocompatibility complex class I-restricted cytotoxic T cells

A previous report showed that the proliferative response of helper T cells to class II major histocompatibility complex (MHC)-restricted antigens can be inhibited by analogues of the antigen, which act as T cell receptor (TCR) antagonists. Here we define and analyze peptide variants that antagonize various functions of class I MHC-restricted cytotoxic T lymphocyte (CTL) clones. Of 64 variants a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 177  شماره 

صفحات  -

تاریخ انتشار 1993